Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.492
Filtrar
1.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566395

RESUMO

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Língua/metabolismo , Língua/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
2.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662224

RESUMO

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Assuntos
Sobrevivência Celular , Peróxido de Hidrogênio , Melanócitos , Vitiligo , Humanos , Vitiligo/genética , Vitiligo/patologia , Melanócitos/metabolismo , Melanócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Masculino , Adulto , Feminino , Proliferação de Células/genética , Pele/patologia , Pele/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Biópsia , Adolescente , Adesão Celular/genética
3.
Mol Biol Rep ; 51(1): 523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630183

RESUMO

BACKGROUND: In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS: Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS: SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating ß-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and ß-catenin. CONCLUSION: The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinazolinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , beta Catenina , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Morte Celular , Fatores de Transcrição SOX9/genética
4.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653754

RESUMO

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular , Fatores de Transcrição SOX9 , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transporte Ativo do Núcleo Celular/genética , Camundongos , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
Tissue Cell ; 87: 102315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335885

RESUMO

BACKGROUND: Retinal ischemia-refusion (I/R) is a leading cause of irreversible blindness worldwide. This study aims to explore the regulatory role of SOX9 in retinal I/R injury, and attempts to elucidate its potential regulatory mechanism. METHODS: Retinal I/R injury model was established in vivo, and the histological changes was examined by hematoxylin and eosin (H&E) staining and immunofluorescent assay was performed to examine SOX9 expression. Oxygenation-glucose deprivation/reoxygenation (OGD/R)-induced retinal ischemia/reperfusion (I/R) injury in 661 W cells was constructed as an in vitro cellular model of glaucoma. The production of cytokines, lactate dehydrogenase (LDH) and the antioxidant enzymes were assessed by their commercial kits. Cellular reactive oxygen species (ROS) and lipid ROS was detected using DCFH-DA and C11-BODIPY 581/591 staining, respectively. Lipid peroxidation and Fe2+ level were detected to assess the ferroptosis level. Protein expression was examined by western blot. LM22B-10, the agonist of ERK signaling, was used to pretreat 661 W cells for mechanism investigation. RESULTS: SOX9 was aberrantly upregulated following retinal I/R injury both in vivo and in vitro. SOX9 knockdown exerted a protective role against OGD/R-triggered oxidative stress, inflammatory response and ferroptosis in 661 W cells. Further, ERK/p38 signaling was activated in 661 W cells following OGD/R induction, which was repressed by SOX9 knockdown, and the ERK signaling agonist partially counteracted the protective role of SOX9 knockdown against oxidative stress, inflammatory response and ferroptosis in OGD/R-induced 661 W cells. CONCLUSION: Collectively, inhibiting SOX9 to block oxidative stress, inflammation and ferroptosis by inactivating ERK/p38 signaling might be effective to prevent retinal I/R injury, thereby alleviating glaucoma.


Assuntos
Ferroptose , Glaucoma , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Apoptose , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo , Glaucoma/metabolismo , Isquemia , Glucose/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
6.
Sci Transl Med ; 16(736): eabq4581, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416842

RESUMO

Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Células Endoteliais , Fibrose , Peptídeos e Proteínas de Sinalização Intercelular , Cirrose Hepática/complicações , Fatores de Transcrição SOX9/genética
7.
Arthritis Res Ther ; 26(1): 56, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388473

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes disability worldwide. Exosomes released by fibroblast-like synoviocytes in RA (RA-FLSs-Exos) play a role in the development of RA, and circular RNAs (circRNAs) are important for RA progression. This study aimed to investigate the molecular mechanisms underlying the effects of RA-FLSs-Exos in RA and identify the potential pathway responsible for these effects. METHODS: We initially conducted microarray analysis to identify dysregulated circRNAs in exosomes associated with RA. We then co-cultured isolated RA-FLSs-Exos with chondrocytes to examine their role in RA. In vivo experiments were performed using collagen-induced arthritis mouse models, and circFTO knockdown was achieved through intra-articular injection of AAV5 vectors. RESULTS: Our findings revealed increased expression of circFTO in both RA-FLSs-Exos and synovial tissues from patients with RA. Exosomal circFTO hindered chondrocyte proliferation, migration, and anabolism while promoting apoptosis and catabolism. Mechanistically, we discovered that circFTO facilitates the formation of methyltransferases complex to suppress SRY-related high-mobility group box 9 (SOX9) expression with assistance from YTH domain family 2 (YTHDF2) through an m6A-dependent mechanism. Furthermore, inhibition of circFTO improved symptoms of RA in vivo. CONCLUSION: Taken together, our study demonstrates that exosomal circFTO derived from FLSs contributes to the progression of RA by targeting SOX9. These findings highlight a promising target for treating RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Camundongos , Humanos , Sinoviócitos/metabolismo , Condrócitos/metabolismo , RNA Circular/genética , Proliferação de Células , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
8.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346197

RESUMO

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Assuntos
Condrócitos , Estudo de Associação Genômica Ampla , Camundongos , Humanos , Animais , Condrócitos/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular , Proliferação de Células , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
9.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386758

RESUMO

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Assuntos
Injúria Renal Aguda , Rim , Insuficiência Renal Crônica , Fatores de Transcrição SOX9 , Animais , Humanos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Células Epiteliais , Fibrose , Rim/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fatores de Transcrição SOX9/genética , Regeneração , Camundongos
10.
Invest Ophthalmol Vis Sci ; 65(2): 25, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345552

RESUMO

Purpose: To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods: OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results: The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions: A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.


Assuntos
Oftalmopatia de Graves , Humanos , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Órbita/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , Fibrose , Células Cultivadas , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
11.
Sci Rep ; 14(1): 1483, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233470

RESUMO

At the molecular level, triple-negative breast cancer (TNBC) is frequently categorized as PAM50 basal-like subtype, but despite the advances in molecular analyses, the clinical outcome for these subtypes is uncertain. Long non-coding RNAs (lncRNAs) are master regulators of genes involved in hallmarks of cancer, which makes them suitable biomarkers for breast cancer (BRCA) diagnosis and prognosis. Here, we evaluated the regulatory role of lncRNA SOX9-AS1 in these subtypes. Using the BRCA-TCGA cohort, we observed that SOX9-AS1 was significantly overexpressed in basal-like and TNBC in comparison with other BRCA subtypes. Survival analyzes showed that SOX9-AS1 overexpression was associated with a favorable prognosis in TNBC and basal-like patients. To study the functions of SOX9-AS1, we determined the expression levels in a panel of nine BRCA cell lines finding increased levels in MDA-MB-468 and HCC1187 TNBC. Using subcellular fractionation in these cell lines, we ascertained that SOX9-AS1 was located in the cytoplasmic compartment. In addition, we performed SOX9-AS1 gene silencing using two short-harping constructs, which were transfected in both cell models and performed a genome-wide RNA-seq analysis. Data showed that 351 lncRNAs and 740 mRNAs were differentially expressed in MDA-MB-468 while 56 lncRNAs and 100 mRNAs were modulated in HCC1187 cells (Log2FC < - 1.5 and > 1.5, p.adj value < 0.05). Pathway analysis revealed that the protein-encoding genes potentially regulate lipid metabolic reprogramming, and epithelial-mesenchymal transition (EMT). Expression of lipid metabolic-related genes LIPE, REEP6, GABRE, FBP1, SCD1, UGT2B11, APOC1 was confirmed by RT-qPCR. Functional analysis demonstrated that the knockdown of SOX9-AS1 increases the triglyceride synthesis, cell migration and invasion in both two TNBC cell lines. In conclusion, high SOX9-AS1 expression predicts an improved clinical course in patients, while the loss of SOX9-AS1 expression enhances the aggressiveness of TNBC cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , RNA Longo não Codificante/metabolismo , 60645 , Movimento Celular/genética , Lipídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo
12.
Eur J Med Res ; 29(1): 66, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245767

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common structural deformity of the spine affecting adolescent individuals globally. The disorder is polygenic and is accompanied by the association of various genetic loci. Genetic studies in Chinese and Japanese populations have shown the association of genetic variants of SOX9 with AIS curve severity. However, no genetic study evaluating the association of SRY-Box Transcription Factor 9 (SOX9) variants with AIS predisposition has been conducted in any Indian population. Thus, we aimed to investigate the association of the genetic variants of the SOX9 along with 0.88 Mb upstream region with AIS susceptibility in the population of Northwest India. METHODS: In total, 113 AIS cases and 500 non-AIS controls were recruited from the population of Northwest India in the study and screened for 155 genetic variants across the SOX9 gene and 0.88 Mb upstream region of the gene using Global Screening Array-24 v3.0 chip (Illumina). The statistical significance of the Bonferroni threshold was set at 0.000322. RESULT: The results showed the association of 11 newly identified variants; rs9302936, rs7210997, rs77736349, rs12940821, rs9302937, rs77447012, rs8071904, rs74898711, rs9900249, rs2430514, and rs1042667 with the AIS susceptibility in the studied population. Only one variant, rs2430514, was inversely associated with AIS in the population, while the ten variants were associated with the AIS risk. Moreover, 47 variants clustered in the gene desert region of the SOX9 gene were associated at a p-value ≤ 0.05. CONCLUSION: The present study is the first to demonstrate the association of SOX9 enhancer locus variants with AIS in any South Asian Indian population. The results are interesting as rs1042667, a 3' untranslated region (UTR) variant in the exon 3 and upstream variants of the SOX9 gene, were associated with AIS susceptibility in the Northwest Indian population. This provides evidence that the variants in the enhancer region of SOX9 might regulate its gene expression, thus leading to AIS pathology and might act as an important gene for AIS susceptibility.


Assuntos
Escoliose , Humanos , Adolescente , Escoliose/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Povo Asiático/genética , Genótipo , Fatores de Transcrição SOX9/genética
13.
Nanoscale ; 16(2): 833-847, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38093712

RESUMO

Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.


Assuntos
Lesões Encefálicas , Nanopartículas , Acidente Vascular Cerebral , Humanos , Animais , Astrócitos/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Lesões Encefálicas/metabolismo , Peptídeos/farmacologia , Encéfalo/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/farmacologia
14.
BMC Pulm Med ; 23(1): 421, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919693

RESUMO

OBJECTIVE: SOX9 has been shown to be related to the metastasis of various cancers. Recently, it has been reported that SOX9 plays a regulatory role in lung adenocarcinoma (LUAD) cell metastasis, but the specific mechanism remains to be explored. Therefore, the objective of this study was to observe the effect and mechanism of SOX9 on the invasion and migration of LUAD cells. METHODS: RT-qPCR was applied to observe the expression of SOX9 and RAP1 in tumor tissues and corresponding normal lung tissues collected from LUAD patients. Co-immunoprecipitation and Pearson correlation to analyze the expression correlation of SOX9 with RAP1. To observe the role of SOX9, the invasion and migration levels of LUAD A549 cells in each group were observed by Transwell invasion assay and Scratch migration assay after knocking down or overexpressing SOX9. Besides, the expression levels of RAP1 pathway-related proteins (RAP1, RAP1GAP and RasGRP33) were observed by RT-qCPR or western blot. Subsequently, RAP1 was overexpressed and SOX9 was knocked down in A549 cells, and then the cell invasion/migration level and RAP1 pathway activity were assessed. RESULTS: The expression levels of SOX9 and RAP1 in tumor tissues and A549 cells of LUAD patients were significantly increased and positively correlated. Overexpression of SOX9 or RAP1 alone in A549 cells enhanced the invasion and migration ability of cells, as well as up-regulated the expression levels of RAP1, RAP1GAP and RasGRP33. However, knocking down SOX9 decreased cell invasion and migration levels and weakened the activity of RAP1 pathway. Notably, overexpressing RAP1 while knocking down SOX9 significantly activated RAP1 pathway and promoted cell invasion and migration. CONCLUSION: Overexpression of SOX9 in LUAD can significantly activate the RAP1 signaling pathway and promote cell invasion and migration.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Transdução de Sinais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
15.
Elife ; 122023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847154

RESUMO

DMRT1 is the testis-determining factor in several species of vertebrates, but its involvement in mammalian testes differentiation, where SRY is the testis-determining gene, remains ambiguous. So far, DMRT1 loss-of-function has been described in two mammalian species and induces different phenotypes: Disorders of Sex Development (46, XY DSD) in men and male infertility in mice. We thus abolished DMRT1 expression by CRISPR/Cas9 in a third species of mammal, the rabbit. First, we observed that gonads from XY DMRT1-/- rabbit fetuses differentiated like ovaries, highlighting that DMRT1 is involved in testis determination. In addition to SRY, DMRT1 is required in the supporting cells to increase the expression of the SOX9 gene, which heads the testicular genetic cascade. Second, we highlighted another function of DMRT1 in the germline since XX and XY DMRT1-/- ovaries did not undergo meiosis and folliculogenesis. XX DMRT1-/- adult females were sterile, showing that DMRT1 is also crucial for female fertility. To conclude, these phenotypes indicate an evolutionary continuum between non-mammalian vertebrates such as birds and non-rodent mammals. Furthermore, our data support the potential involvement of DMRT1 mutations in different human pathologies, such as 46, XY DSD as well as male and female infertility.


Animals that reproduce sexually have organs called gonads, the ovaries and testes, which produce eggs and sperm. These organs, which are different in males and females, originate from the same cells during the development of the embryo. As a general rule, the chromosomal sex of an embryo, which gets determined at fertilization, leads to the activation and repression of specific genes. This in turn, controls whether the cells that will form the gonads will differentiate to develop testes or ovaries. Disruption of the key genes involved in the differentiation of the gonads can lead to fertility problems, and in some cases, it can cause the gonads to develop in the 'opposite' direction, resulting in a sex reversal. Identifying these genes is therefore essential to know how to maintain or restore fertility. DMRT1 is a gene that drives the differentiation of gonadal cells into the testicular pathway in several species of animals with backbones, including species of fish, frogs and birds. However, its role in mammals ­ where testis differentiation is driven by a different gene called SRY ­ is not well understood. Indeed, when DMRT1 is disrupted in male humans it leads to disorders of sex development, while disrupting this gene in male mice causes infertility. To obtain more information about the roles of DMRT1 in mammalian species, Dujardin et al. disrupted the gene in a third species of mammal: the rabbit. Dujardin et al. observed that chromosomally-male rabbits lacking DMRT1 developed ovaries instead of testes, showing that in rabbits, both SRY and DMRT1 are both required to produce testes. Additionally, this effect is similar to what is seen in humans, suggesting that rabbits may be a better model for human gonadal differentiation than mice are. Additionally, Dujardin et al. were also able to show that in female rabbits, lack of DMRT1 led to infertility, an effect that had not been previously described in other species. The results of Dujardin et al. may lead to better models for gonadal development in humans, involving DMRT1 in the differentiation of testes. Interestingly, they also suggest the possibility that mutations in this gene may be responsible for some cases of infertility in women. Overall, these findings indicate that DMRT1 is a key fertility gene.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Testículo , Animais , Feminino , Masculino , Coelhos , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Mamíferos/genética , Processos de Determinação Sexual/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Testículo/metabolismo
16.
FASEB J ; 37(10): e23174, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37668416

RESUMO

Sry-box9 (SOX9) maintains stem cell properties and plays crucial roles in many cancers. However, whether SOX9 is correlated with cervical cancer cell stemness and its detailed mechanism remains obscure. We studied the relationship between SOX9 and prognosis of cervical cancer through public database, and SOX9 was related to poor prognosis of cervical cancer. Elevated SOX9 expression enhanced the self-renewal properties and promotes tumorigenicity in cervical cancer. Overexpression of SOX9 could promote the expression of stem cell-related factors in cervical cancer cells and xenografts. Meanwhile, overexpression of SOX9 could also enhance the expressions of FZD10, ß-catenin, and c-Myc in cervical cancer cells and xenografts, while inhibiting the expression of DDK1. The activation of Wnt pathway by chir-99 021 raised the tumor spheroid ability of SOX9 knockdown HeLa cells. In addition, SOX9 could transcriptional inhibit DKK1 and activate FZD10 and MYC by binding to their promoters to affect the Wnt/ß-catenin pathway. These results demonstrated SOX9 regulated the self-renewal and tumorigenicity of cervical cancer through Wnt/ß-catenin pathway by directly transcriptional activation of FZD10, MYC and transcriptional inhibition of DKK1.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Regulação para Cima , Ativação Transcricional , Via de Sinalização Wnt , beta Catenina/genética , Células HeLa , Fatores de Transcrição SOX9/genética
17.
Cell Transplant ; 32: 9636897231193073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37737125

RESUMO

Angiogenesis is strongly associated with ovarian hyperstimulation syndrome (OHSS) progression. Early growth response protein 1 (EGR1) plays an important role in angiogenesis. This study aimed to investigate the function and mechanism of EGR1 involved in OHSS progression. RNA-sequencing was used to identify differentially expressed genes. In vitro OHSS cell model was induced by treating KGN cells with human chorionic gonadotropin (hCG). In vivo OHSS model was established in mice. The expression levels of EGR1, SOX1, and VEGF were determined by Quantitative Real-Time polymerase chain reaction (qRT-PCR), Western blot, immunofluorescence staining, and immunochemistry assay. The content of VEGF in the culture medium of human granulosa-like tumor cell line (KGN) cells was accessed by the ELISA assay. The regulatory effect of EGR1 on SRY-box transcription factor 9 (SOX9) was addressed by luciferase reporter assay and chromatin immunoprecipitation. The ERG1 and SOX9 levels were significantly upregulated in granulosa cells from OHSS patients and there was a positive association between EGR1 and SOX9 expression. In the ovarian tissues of OHSS mice, the levels of EGR1 and SOX9 were also remarkedly increased. Treatment with hCG elevated the levels of vascular endothelial growth factor (VEGF), EGR1, and SOX9 in KGN cells. Silencing of EGR1 reversed the promoting effect of hCG on VEGF and SOX9 expression in KGN cells. EGR1 transcriptionally regulated SOX9 expression through binding to its promoter. In addition, administration of dopamine decreased hCG-induced VEGF in KGN cells and ameliorated the progression of OHSS in mice, which were companied with decreased EGR1 and SOX9 expression. EGR1 has a promoting effect on OHSS progression and dopamine protects against OHSS through suppression of EGR1/SOX9 cascade. Our findings may provide new targets for the treatment of OHSS.


Assuntos
Síndrome de Hiperestimulação Ovariana , Animais , Feminino , Humanos , Camundongos , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/genética , Gonadotropina Coriônica/metabolismo , Dopamina , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Síndrome de Hiperestimulação Ovariana/genética , Síndrome de Hiperestimulação Ovariana/induzido quimicamente , Síndrome de Hiperestimulação Ovariana/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Stem Cells ; 41(12): 1157-1170, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37651107

RESUMO

Articular cartilage plays vital roles as a friction minimizer and shock absorber during joint movement but has a poor capacity to self-repair when damaged through trauma or disease. Cartilage tissue engineering is an innovative technique for cartilage regeneration, yet its therapeutic application requires chondrocytes in large numbers. Direct reprogramming of somatic cells to chondrocytes by expressing SOX9, KLF4, and c-MYC offers a promising option to generate chondrocytes in sufficient numbers; however, the low efficiency of the reprogramming system warrants further improvement. Here we referred to structural and functional features of SOX9 and performed alanine-scanning mutagenesis of functionally critical residues in the HMG box and at putative posttranslational modification (PTM) sites. We discovered that a SOX9 variant H131A/K398A, doubly mutated in the HMG box (H131) and at a PTM site (K398), significantly upregulated expression of chondrogenic genes and potently induced chondrocytes from mouse embryonic fibroblasts. The H131A/K398A variant remained unsumoylated in cells and exhibited a stronger DNA-binding activity than wild-type SOX9, especially when complexed with other proteins. Our results show that the novel SOX9 variant may be useful for efficient induction of chondrocytes and illuminate the strategic feasibility of mutating a transcription factor at functionally critical residues to expedite discovery of an optimized reprogramming factor.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Camundongos , Condrócitos/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Células Cultivadas
19.
Cell Signal ; 111: 110854, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611648

RESUMO

BACKGROUND: Recent research has highlighted the versatile functions of long non-coding RNAs (lncRNAs) in the onset and progression of various malignancies. Still, insufficient knowledge is available on how lnc-SOX9-4 functions in colorectal cancer (CRC) progression. METHODS: Bioinformatics analysis was used to identify a novel lncRNA (lnc-SOX9-4), and the expression pattern of the RNA in CRC was verified using qRT-PCR. Gene ontology (GO) term analysis and Gene set enrichment analysis (GSEA) were implemented for the identification of the related mechanisms and roles of lnc-SOX9-4. Immune infiltration analysis was conducted for assessment of how lnc-SOX9-4 is linked to tumor immune cell infiltration level. Both in vitro and in vivo phenotype analyses were conducted for scrutinizing how lnc-SOX9-4 impacts the proliferation and metastasis of CRC. RNA pulldown, mass spectrometry analysis, fluorescent in situ hybridization (FISH), western blotting, and RIP assay aided in verifying lnc-SOX9-4 mechanisms linked to CRC progression. RESULTS: An upregulation of lnc-SOX9-4 was observed in the sample CRC cells and tissues. Elevated lnc-SOX9-4 levels showed a positive association with poor clinical prognosis. Lnc-SOX9-4 was closely correlated to several types of immune infiltrating cells. Functionally, the knockdown of lnc-SOX9-4 significantly inhibited CRC cell proliferation, migration, and invasion abilities. Mechanistically, YBX1 was identified as lnc-SOX9-4, specifically interacting protein in the nucleus. Lnc-SOX9-4 could stabilize YBX1 protein levels by inhibiting poly-ubiquitination and degradation of YBX1. Furthermore, phenotype rescue experiments reveal that lnc-SOX9-4 enhanced the CRC cellular potential to proliferate and metastasize by regulating YBX1 levels. CONCLUSIONS: Lnc-SOX9-4 promoted CRC progression by suppressing cytoplasmic translocation and promoting protein levels of YBX1 can serve as novel treatment targets for diagnosing and treating CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Hibridização in Situ Fluorescente , RNA/metabolismo , Ubiquitinação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
20.
J Mol Graph Model ; 125: 108587, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579519

RESUMO

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. GR transcriptional activity is modulated by a series of ligands and coenzymes, where a ligand can act as an agonist or antagonist. GR agonists, such as the glucocorticoids dexamethasone (DEX) and prednisolone, are widely prescribed to patients with inflammatory and autoimmune diseases. DEX is also used to induce osteogenic differentiation in vitro. Recently, it has been highlighted that DEX induces changes in the osteogenic differentiation of human mesenchymal stromal cells by downregulating the transcription factor SRY-box transcription factor 9 (SOX9) and upregulating the peroxisome proliferator-activated receptor γ (PPARG). SOX9 is fundamental in the control of chondrogenesis, but also in osteogenesis by acting as a dominant-negative of RUNX2. Many processes remain to be clarified during cell fate determination, such as the interplay between the key transcription factors. The main objective pursued by this work is to shed light on the interaction between GR and SOX9 in the presence and absence of DEX at an atomic level of resolution using molecular dynamics simulations. The outcome of this research could help the understanding of possible molecular interactions between GR and SOX9 and their role in the determination of cell fate. The results highlight the key residues at the interface between GR and SOX9 involved in the complexation process and shed light on the mechanism through which DEX modulates GR-SOX9 binding and exerts its biological activity.


Assuntos
Dexametasona , Receptores de Glucocorticoides , Humanos , Receptores de Glucocorticoides/genética , Dexametasona/farmacologia , Simulação de Dinâmica Molecular , Osteogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...